SEISMIC IMAGING: Modeling earthquakes and Earth's interior based on Exascale simulations of seismic wave propagation

> Jeroen Tromp Princeton University, USA Dimitri Komatitsch LMA CNRS Marseille, France Ognga Liu University of Toronto, Canada

G8 Exascale Projects Workshop

Broader Impacts

- Quantitative seismic hazard assessment
- Seismic imaging (hydrocarbon exploration)
- Seismic inversion (exploration, regional & global seismology)

Outline

Software Development

Adjoint Tomography

Outline

Software Development

Adjoint Tomography

Spectral-Element Method

Spectral finite-elements:

- hexahedral elements
- Lagrange interpolants
- Gauss-Lobatto-Legendre quadrature
- diagonal mass matrix
- explicit time-marching scheme

Parallel Implementation

Global mesh partitioning

Cubed Sphere: 6 n² mesh slices

Open Source Software SPECFEM3D & SPECFEM3D_GLOBE

- B 3D crust and mantle models
- Topography & Bathymetry
- Rotation
- Ellipticity
- Gravitation
- Anisotropy
- Attenuation
- Adjoint capabilities

www.geodynamics.org

G8 Accomplishements & Activities

- Finished production GPU solvers
- Global ShakeMovie is live: near real-time, on-demand seismology global.shakemovie.princeton.edu
- Finished adjoint tomographic inversion of Europe
- Initiated adjoint tomography of Southeast Asia
- Initiated global adjoint tomography
- INCITE allocation on ORNL Titan starting January 2013 (with Olaf Schenk, Lugano)
- Initiating collaborations with Intel (MIC) and IBM (workflows & "big data")

GPU Computing

SPECFEM3D_GLOBE: Mesh Coloring

Max Rietmann, Daniel Peter & Joseph Charles

single node strong scaling_

weak scaling.

strong scaling.

With Peter Messmer, NVIDIA

SPECFEM in Education & Training

GEO/APC 441 Computational Geophysics

Outline

Software Development

Adjoint Tomography

Adjoint Tomography of Europe

earthquakes	stations	iterations	simulations	CPU hours	measurements
190	745	30	17,100	2.3 million	123,205

Adjoint Tomography Workflow

Depth 75 km

Global Adjoint Tomography

IRIS

Another Seismometer....

Laptops and cell phones are currently being explored as potential "social" seismographic networks

Earthquake Data Set

255 earthquakes $5.8 \le Mw \le 7$

shallow: d \leq 50 km intermediate: 50 km < d \leq 300 km deep: d > 300 km

Seismographic Station Coverage

Data Selection

2008, May 31, Mid-Indian Ridge event Mw=6.4, depth=6.5 km

Goal on Titan: 9 s shortest period

window selection: FLEXWIN (Maggi et al. 2009)

Measurements

~2.2 million measurements

Second Generation Model

Conclusions & Future Work

Software Development:

- GPU versions of production software finished
- Excellent weak and strong scaling

see SC'12 talk by Rietmann et al. , Tuesday 4-4:30, 355-EF

- Initiating a collaboration with Intel to port to MIC
- Initiating a collaboration with IBM focused on "big data" and workflows

Adjoint Tomography:

- Finished adjoint tomography of Europe
- Initiated adjoint tomography of Southeast Asia
- Performed two preliminary low-resolution global iterations
 - INCITE allocation on ORNL "Titan" starting January 2013

Big data, Workflow & Virtualization Issues:

- Data assimilation requires massive data processing & analysis
- Preconditioning & smoothing as part of L-BFGS
- Exploring data and model formats to accommodate I/O

NetCDF, PnetCDF, HDF5 and ADIOS

- Model analysis, visualization and utilization