

ICOMEX: Icosahedral-grid Models for Exascale Earth System Simulations

Early results of the G8 Exascale Projects

Thomas Ludwig - University of Hamburg/DKRZ, Günther Zängl - Deutscher Wetterdienst,

Masaki Satoh - University of Tokyo, Hirofumi Tomita - Japan Agency for Marine-Earth Science and Technology,

Leonidas Lindarkis - Max Planck Institute for Meteorology, John Thuburn - University of Exeter,

Thomas Dubos - École polytechnique

Overview

- Introduction
- Scientific objectives, progress and recent results
 - WP1: Model intercomparison and evaluation (PIs Masaki Satoh, Hirofumi Tomita)
 - WP2: Abstract model description scheme (PI Leonidas Linardakis)
 - WP3: GPUs for atmospheric models (PI Thomas Dubos)
 - WP4: Implicit time integration schemes (PI John Thuburn)
 - WP5: Parallel internal postprocessing (PIs Thomas Dubos, John Thuburn)
 - WP6: Parallel I/O (PI Thomas Ludwig)
 - WP7: Collaboration with vendors (PI Thomas Ludwig)
- Project coordination (PI Günther Zängl)
- Summary

Introduction

- What is ICOMEX?
 - Consortium of four international model development groups focusing on icosahedral-grid Earth system models (NICAM, ICON, MPAS, DYNAMICO)

Main strategic goals of ICOMEX

- Select a few key issues relevant on the path towards Exascale computing
- Develop as far as possible generic solutions for these issues
- These solutions are first developed / tested in one of the modeling systems participating in the program (NICAM, ICON, MPAS, DYNAMICO)
- In the final project phase, the solutions are also made accessible to the project partners and subsequently to the scientific community

WP 1: Model intercomparison and evaluation

PI: Masaki Satoh - University of Tokyo,

Hirofumi Tomita - Japan Agency for Marine-Earth Science and Technology

To provide basic information for the other groups

Computational aspects

- Performance in one node
 - Sustained / peak performance ratio [%]
- Performance over nodes
 - Weak and strong scalability

Scientific aspects

Numerical error, convergence, climatological behavior in Aqua-planet experiments, etc.

To exploit synergy effects

Regularly intercomparing the developing model codes on the wide variety of computing platforms available to the project partners

Deterministic test:

- Baroclinic wave test (Jablonowski and Williamson, 2006),
 - Resolution: 240km (glevel5 in NICAM) ~ 30km (glevel8)

Statistical test:

- Held & Suarez (1994) Test Case
 - Wave activity intensity with the same resolution
 - Check of conservation, effective model resolution, energy spectrum
- Multi-year Aqua-planet studies including full physics (Neale and Hoskins, 2000)
 - Reveals behavior of physics parameterizations and quality of physics-dynamics coupling
 - Results usually strongly depend on cumulus parameterization

A 30-year AMIP run

(experiment 3.3 of the CMIP5 experimental suite)

* First evaluations for as-is codes: NICAM, ICON, MPAS, DYNAMICO

Integration Period: 1300 days (first 300 days are for spin-up) Platform: Intel Xeon (Westmere) Cluster

Computational Performance on the K computer

Grid Level	Resolution	PE	DT (sec)	for 10 days	Efficiency
5	240 km	5	1200	3 min	4.8%
6	120 km	20	600	4 min	5.0%
7	60 km	40	300	13 min	5.4%
8	30 km	160	150	26 min	5.3%
9	14 km	640	75	53 min	5.4%
10	7 km	2560	36	100 min	5.3%
11	3.5 km	5120	18	450 min	5.9%
12	1.75 km	5120	9	3000 min	6.0%

- Test case is Jablonowski-Williamson baroclinic wave.
- Number of vertical Layers is 40 levels with constant 600m distance.
- These performances were measured including initialize and data I/O sequences.

Summary and Future

The ICOMEX project: Synergy effects are needed to push the existing icosahedral-grid models towards exascale computing.

- Iterative identification and mitigation of performance bottlenecks
- NICAM and ICON have already been run on a variety of different platforms

Held-Suarez test case was carried out as a statistical test using NICAM and ICON.

Baroclinic wave test was carried out as a deterministic test.

Reference results at even higher resolution are needed to conduct convergence tests and calculate errors

NEXT...

- Try to run the other participating models, MPAS and DYNAMICO, on the same platforms
- APE test case consistency of physical Processes is one of the difficulties.

WP 2: Abstract model description

PI: Leonidas Lindarkis - Max Planck Institute for Meteorology

ICON DSL: Overview

Goals:

Abstract description of arrays/loops by extending Fortran into a DSL.

Use a parser to create pure Fortran code.

Targets:

- Performance
 - Generate "architecture depended" memory access patterns
 - Facilitate architecture specific optimizations (vectorization)
- Explore the possibility to express parallelization uniformly
- Software Engineering: Express models in a more "natural way"
 - Improve productivity, code readability, robustness, maintenance

ICON DSL data abstraction

SUBROUTINE div3d(vec_e, ptr_patch, ptr_int, div_vec_c, ...)

```
! Define where the variable lives on the grid, instead of dimensions
REAL(wp), ON_EDGES_3D, INTENT(in) :: vec_e
REAL(wp), ON_CELLS_3D, INTENT(inout) :: div_vec_c
INTEGER, CELLS_CONNECT_TO_EDGES, POINTER :: iidx, iblk
...
DO jc = i_startidx, i_endidx
DO jk = slev, elev
!The parser reorders the indexes according to architecture-specific
rules
div_vec_c(jc,jk,jb) = &
vec_e(iidx(jc,jb,1),jk,iblk(jc,jb,1)) * ptr_int%geofac_div(jc,1,jb) + &
vec_e(iidx(jc,jb,2),jk,iblk(jc,jb,2)) * ptr_int%geofac_div(jc,2,jb) + & ...
ENDDO
ENDDO
```

```
END SUBROUTINE div3d
```


ICON memory access patterns

```
! System A (Vector machine)
   DO jc = i_startidx, i_endidx
     DO jk = slev, elev
      div vec c(ic,ik,ib) = \&
       vec_e(iidx(jc,jb,1),jk,iblk(jc,jb,1)) * ptr_int%geofac_div(jc,1,jb) + &
       vec_e(iidx(jc,jb,2),jk,iblk(jc,jb,2)) * ptr_int%geofac_div(jc,2,jb) + &
       vec_e(iidx(jc,jb,3),jk,iblk(jc,jb,3)) * ptr_int%geofac_div(jc,3,jb)
! System B (Cache-based machine)
DO jc = i startidx, i endidx
    blk1 = iblk(jc,jb,1)
    idx1 = iidx(jc,jb,1)
    blk2 = iblk(jc,jb,2)
    idx2 = iidx(jc,jb,2)
    blk3 = iblk(jc,jb,3)
    idx3 = iidx(jc,jb,3)
    DO jk = slev, elev
     div_vec_c(jk,jc,jb) = \&
      vec_e(jk, idx1, blk1) * ptr_int%geofac_div(1,jc,jb) + &
      vec_e(jk, idx2, blk2) * ptr_int%geofac_div(2,jc,jb) + &
      vec_e(jk, idx3, blk3) * ptr_int%geofac_div(3,jc,jb)
Inner loop on inner index, no indirect indexing
```


First performance results

Experiment R2B4 on an IBM Power6

Cores	32	64	128	192
No DSL time/(cell*iter)	1.574e-06	7.012e-07	3.574e-07	2.777e-07
DSL time /(cell*iter)	1.390e-06	6.008e-07	3.230e-07	2.504e-07
No DSL iterations/sec	635479	1426037	2798150	3601217
DSL iterations/sec	719527	1664402	3096318	3993947
Speed-up	13%	17%	11%	11%

ICON DSL loop abstraction (in progress)

Math-like syntax using elements/subsets)

```
subset, on_cells_3D :: all_cells
element, on_cells_3D :: cell
element, edges_of_cell_2D :: edge
```

```
for cell in all_cells do
    div_vec_c(cell) = 0.0_wp
    for edge in cell%edges do
        div_vec_c(cell) = div_vec_c(cell) + vec_e(edge) * ptr_int%geofac_div(edge)
        end do
    end do
```

```
! compact sum
for cell in all_cells do
    div_vec_c(cell) = sum[in cell%edges] (vec_e * ptr_int%geofac_div)
end do
```


WP 3: Feasibility study for using GPUs for atmospheric models

PI: John Thuburn - University of Exeter,

Thomas Dubos - École polytechnique

Scientific objectives

How much GPU performance can be extracted by:

- Low-level implementation (CUDA, OpenCL)
- High-level implementation (HMPP, OpenAcc)

Assess performance with DYNAMICO core

- ~1000 performance-critical lines
- Recent GPU-friendly design
- Hydrostatic but compute patterns representative of ICON, NICAM, MPAS

Identify efficient programming patterns

- Expressed at high-level
- Suitable for multi-component, open modelling systems

DYNAMICO: a hydrostatic core on a structured icosahedral grid

Structured data layout

ENDDO

Status and plans

DYNAMICO core

- No-physics dry core, ready summer 2012 (was planned spring 2012)
- Passed short-term test cases during DCMIP workshop in Aug. 2012 (sufficient for this WP)
- Code streamlining under way before GPU experimentation
- GPU implementations/assessment
 - Start Jan. 2013 on NVIDIA hardware
 - Low-level : CUDA Fortran
 - High-Level : OpenACC
- Extra plans if time/resources allow
 Couple with physics parameterizations
 Experiment with XeonPhi hardware

Goals:

- Stable and accurate scheme allowing longer time steps
- Efficient and scalable elliptic solver for icosahedral grids

$$\begin{split} \Phi^{n+1} - \Phi^n + \Phi^* \overline{\nabla \cdot \mathbf{u}} + (NL) &= 0\\ \mathbf{u}^{n+1} - \mathbf{u}^n + \overline{\nabla \Phi} + (NL) &= 0 \end{split}$$

where $\overline{\psi} = \alpha \psi^{n+1} + (1 - \alpha) \psi^n$

Requires less ad-hoc dissipation than (split) explicit or HEVI schemes

But implicit schemes require the solution of an elliptic problem for the unknowns at each time step

$$\alpha^2 \Delta t^2 \nabla \cdot (\Phi^* \nabla \Phi^{n+1}) - \Phi^{n+1} = \text{RHS}$$

Can we solve such problems efficiently enough on massively parallel machines to make implicit time schemes worthwhile?

Explore multigrid methods to solve the elliptic problem

• Unlike Krylov subspace methods (such as CG), there is only local communication at each iteration.

• The elliptic problem has an intrinsic length scale $L = (\Phi^*)^{1/2} \Delta t$ We only need to coarsen until $\Delta x \sim L$, typically 3-4 levels. Processors don't run out of work.

• A Jacobi smoother is effective and conservative, and keeps the possibility of strong bit reproducibility.

Some initial results

For a single multigrid sweep on a typical test problem...

Underrelax param	Residual	Error
0.5	1.22E-3	3.44E-4
0.6	7.12E-4	2.30E-4
0.7	4.52E-4	1.62E-4
0.8	3.02E-4	1.18E-4
0.9	2.09E-4	8.80E-5
1.0	1.52E-4	6.76E-5

On a hexagonal Voronoi grid, the optimal under-relaxation parameter is close to 1

Number of levels	Residual	Error
1	0.56	0.56
2	1.29E-5	1.28E-5
3	1.12E-7	1.00E-7
4	1.12E-7	1.00E-7
5	1.12E-7	1.00E-7

 $\Delta x \sim L$ is a good criterion to determine the number of levels needed (Here 3 is enough)

Next steps

Parallel implementation and optimisation (e.g. duplicating flops to reduce communication)

Restriction and prolongation operators for locally refined grids

Implementation within MPAS – a new atmospheric model developed at NCAR / Los Alamos

Objectives

- Major bottleneck: massive amounts of data to be produced by exascale climate simulations
- Scientific usage does not require all data at high spatio-temporal resolution
- Approach: reduce outputs by performing common post-processing on-line
 - Temporal average / min / max
 - Extraction of region of interest (clipping)
 - Grid coarsening, transfer to user-friendly grids (lon-lat)
- Design must be parallel from the start
- Approach : start with XIOS (XML I/O Server) and develop missing keyfunctionalities

XML I/O Server

- Parallel design
- User-friendly (XML) description of outputs
- Features temporal average/min/max, clipping
- Production-grade tool used by NEMO ocean model
- Needs extension to unstructured grids
- ICOMEX development: flexible interpolation tool to/from unstructured spherical meshes

Interpolation to/from spherical meshes

- Desired properties
 - Arbitrary spherical meshes
 - Exactly conservative
 - Second-order accuracy
 - Explicit and local : no global linear system to solve, no iteration
 - Algorithmic efficiency
 - Parallelism of performance-critical parts
- Criteria not met by existing libraries: Jones (1999) (SCRIP), Farrell et al. (2005), Ullrich et al. (2009)
- Evaggelos Kritsikis hired in March 2012
 - Conservation guaranteed by using a supermesh and careful treatment of sphericity
 - Supermesh construction based on fast tree-based search
 - Tree construction costs O(N log N) for each mesh
 - Accuracy obtained by finite-volume style piecewise linear reconstruction

Interpolation to/from spherical meshes

Tree is computed once per simulation (pre-processing step)

- Tree view of unstructured meshes
 - Cells are inserted in a hierarchy of «nodes»
 - Nodes are characterized by their circumcircle => fast search algorithm
 - Nodes are split when they become too large

Interpolation to/from spherical meshes

- Piecewise linear reconstruction
 - Data locality: only nearest neighbours
 - Explicit first-order gradient reconstruction
 - Second-order one-point quadrature formula at centroids of supermesh cells
- Interpolation weights are computed once per simulation (pre-processing)
- Data locality => inherently parallel interpolation

- Tree construction time closer to O(N) than theoretical O(N log N)
- Conservation is exact within round-off error
- Piecewise-linear interpolation is secondorder accurate as expected

 L° error

- Plans for 2012/2013
 - Extend XIOS to unstructured grids
 - Integrate interpolation with XIOS
 - Provide as standalone library
 - Interpolation of vector fields defined on staggered grids (MPAS, ICON, DYNAMICO)

WP 6: Parallel I/O PI: Thomas Ludwig - University of Hamburg/DKRZ

Scientific objectives

- Analysis of access patterns and behavior of
 - Applications
 - I/O middleware
 - System
- Assess performance on the different I/O layers
- Localization of bottlenecks in hardware and software
 - By comparison of theoretical and measured performance
- Develop optimization strategies
- Creation of a scalable benchmark which mimics model I/O on these layers
- The ICON model is clear application driver
 - Analysis and modifications to middleware and system help everyone

Subgoal: Tracing of MPI and I/O routines

Instrumentation of MPI and (internal) I/O routines

Helps during analysis

		wait	tall				
	Vaitall						
		Waitall					
		Waitall					
	1	I	1		1		
0	2,162.50	2,175.00	2,187.50	2,200.00	2,212.50	2,225.00	2,237.50

- General lossless compression for scientific data
- Highest compression rate in tests (16% better than uninformed compression)
- Improved on-disk format for long-term archival
- Patch for HDF5

to support MAFISC

Benchmarks

- To localize bottlenecks of the current ICON-I/O,
 - a set of (simple) benchmarks were written
 - Resembles current ICON–Output
 - Ported to HDF5, NetCDF, and pNetCDF
 - Versions for sequential, parallel and parallel multifile access
 - Applied to ten different library builds
- Resulting performance spread across three orders of magnitude
 - Identified several performance issues in the interplay between
 - DKRZ's GFPS file system, NetCDF, pNetCDF and HDF5
- In progress: Parameterizable benchmark

Selected benchmarking results

Optimization

Localized performance issues in NetCDF and pNetCDF

- Patch for NetCDF to improve performance:
 - Available at <u>http://wr.informatik.uni-hamburg.de/research/projects/icomex/cachelessnetcdf</u>
- Improves performance by a factor of 3.2

pNetCDF issue was found in the underlying MPI/IO-library

- This library is not open source.
 - We can neither investigate further nor can we develop a fix for it.
- The vendor has been informed.
 - Lengthy discussion
 - Necessary modifications to pNetCDF will be made to extract performance

WP 7: Collaboration with vendors PI: Thomas Ludwig - University of Hamburg/DKRZ

Goals

- This WP addresses co-design and knowledge transfer
- Vendors => ICOMEX consortium
 - Guidance on efficient code level structure, especially for future platforms
 - Allows climate codes to be ready for future technology
- ICOMEX consortium => Vendors
 - Information on specific needs of climate codes
 - Allows vendors to develop products to address these needs

Current status

- The codes, documentation of the consortium are available for vendors on our Redmine
- So far: Discussions of demands occur mainly during project meetings
- Communication of I/O bottlenecks and patches
 - NetCDF-patches and issues communicated to the developers
 - Detailed description of MPI/IO-issue communicated to IBM
 - MAFISC source code communicated to NetCDF and HDF5 developers
 - Need for external filter modules communicated to HDF5 developers
 - Additional patch for an external module loader

In progress / Future work

- Communication of benchmark code (I/O and model cores)
 - Allow vendors to test compiler developement, scalability etc... with stripped applications
- Setting up of a forum to allow more direct communication
 - Integration into ENES Portal anticipated
 - Collaboration with DKRZ for sustained activity that helps earth-science in the long-term
 - Initial conceptual sketch will be developed within ICOMEX

Project coordination

Günther Zängl - Deutscher Wetterdienst

Communication / Coordination

- Available communication tools
 - Redmine project management
 - Wiki, Issue trackers
 - Mailing lists: internal and external including vendors
 - Phone conferences have not been found necessary so far
 - Different time zones leave only narrow time slots; mailinglists and Redmine provide sufficient communication channels
 - Provides daily updated mirror of svn servers used for model development
 - Currently used for ICON only, mirrors for other models are in progress.
- Annual project meetings at DWD

🔶 🤿 😵 S)	https://red	mine.wr.inform	atik.uni-hamburg.de	/projects/ic	comex/wiki			∯ ▼ C	Sar günt	ther zängl dwd	۹ 💩 🖈 🔍
Home My page Projects Administration Help								Logged in as kunkel	My account Sign out		
ICOMEX						Search:			ICOMEX	:	
Overview	Activity	Issues	New issue	Wiki	Repository	Settings					
Wiki						🥖 Edit 🚖	Watch 🔒 Lock	🕐 Rename 前 Delete	History	Wiki	
GuideliWork p	 Guidelines and Structure Work packages Current status, working plans, 									Start page Index by title Index by date	
• Comm	unication										
• Open P	rogrammin	g Issues									
Perform	mance Aspe	cts									
• Related	d Projects a	nd Literatur	e								
Progre	ss reports										
• Presen	tations										
New file											
							A	lso available in: PDF HT	ML TXT	}	

Progress

Most projects started late due to difficulties in recruiting appropriate scientists

- Last project scientist for WP3/WP5 started only in summer 2012!
- Progress is within schedule relative to the start date of for most WPs
- WP1 already started 6 months before the official start of ICOMEX; other WP's were not yet ready at that time
- Difficulties with supercomputers
- Modular project structure mitigates fluctuations in progress speed/starting dates
 - WP2 to WP6 do not have much interdependencies within the main project phase

Path to extreme scale

ICOMEX enables research in key issues required for scalable earth-system models

- Alternative algorithms (implicit solvers)
- Improved code quality and portability (DSL)
- Scalable I/O
- Model quality
- Future architectures
- ICOMEX allows to conduct a combination of basic and applied research
- ICOMEX has connections to broader needs of the scientific research community
 - Generic solutions are made available and can be adjusted by different fields

Benefits of international cooperation

Access to international resources are possible (e.g. evaluation on K-computer)

- Rapid information exchange across countries
 - Spreading best-practice of hardware/software
 - Consortial members of each country are typically integrated in national efforts
 - Multipliers of knowledge
- We know that there is more potential than currently used
 - We seek for approaches and strategies to exploit the potential better

Summary

What do we have achieved so far?

- Enhanced international collaboration among global model developers
- Work on selected key problems on the way to Exascale computing has started
- Several performance bottlenecks have already been identified; solutions have been developed for part of them

Early conclusions – how to proceed towards Exascale computing?

- Much more resources will be needed to thoroughly prepare our models for the upcoming challenges, including extensive participation of experienced senior scientists
- Access to supercomputing resources for model development / optimization should be simplified